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Ising-Bloch transition for spatially extended patterns
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The Ising-Bloch transition for domain walls in spatially extended nonlinear systems is a known phenom-
enon. We show a similar transition for extended patterns, such as labyrinths and stripes. The analysis is
performed in the frame of the parametrically driven Ginzburg-Landau equation, which is a paradigmatic model
for a variety on nonlinear systems showing the Ising-Bloch transition of domain walls.
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I. INTRODUCTION

The parametrically driven Ginzburg-Landau equation
(PGLE) for the complex-valued order parameter A(r,t)

JA .
P (u+iv)A+yA" +dV2A - (1 +ic)APA, (1)

is a generic model describing the slow phase and amplitude
modulations of a spatially distributed assembly of coupled
oscillators in simultaneous presence of Hopf and saddle-node
bifurcations. It is perhaps the simplest model describing
phase domains, and the Ising and Bloch walls between the
phase domains, in spatially extended systems [1]. It finds
applications in a large variety of nonlinear physical systems,
such as parametrically driven chains of coupled pendula [2],
or surface waves in deep liquid channels [3] and granular
layers [4]. Of special interest is the relation of Eq. (1) with
nonlinear optics, since the PGLE is an order parameter equa-
tion for different nonlinear optical resonators, such as degen-
erate optical parametric oscillators [5], four wave mixing in
driven resonators [6], and resonators with Kerr-nonlinearity
accounting for two polarization components of the fields [7].
In Eq. (1) the parameter w measures the distance from the
Hopf bifurcation point, and represents the coefficient of co-
herent (phase invariant) gain, if positive, or the coefficient of
losses, if negative. In nonlinear optical resonators it corre-
sponds to the net coherent amplification of the light (the gain
minus loss). The parameter y corresponds to the forcing am-
plitude with a frequency twice that of the Hopf bifurcation,
and measures the distance to the saddle-node bifurcation
point. In degenerate nonlinear optical systems, where para-
metric generation or four wave mixing takes place, it corre-
sponds to a parametric (phase squeezed) gain. The parameter
v represents the off-resonance detuning, which in nonlinear
optical systems denotes the difference between the frequency
of the forcing amplitude and that of the closest resonance
mode of the resonator. The coefficient of the Laplace opera-
tor d=d,,+id,, is the diffusion/diffraction coefficient, and is
complex in general. In nonlinear optics typically diffraction
prevails against diffusion, and the relation dy,,> dg. holds.
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The coefficient of nonlinearity in nonlinear optical sys-
tems is usually real, or nearly real, (|c|<1), which means
that the saturation of the generated waves is the main source
of the nonlinearity. However, in some cases the real and
imaginary parts of the nonlinearity coefficient are of the
same order of magnitude, e.g., for resonators with Kerr me-
dia with focusing/defocusing effects, for semiconductor reso-
nators, where nonlinear focusing-defocusing occurs due to
the so called « factor, or for optical parametric oscillators
with pump detuning.

At high forcing amplitudes, when y> u, Eq. (1) leads to
perfectly phase squeezed patterns with real-valued order pa-
rameters. The nature of these patterns depends on the value
of detuning. For small detuning (v<<7y) Eq. (1) supports
phase domains, for large detuning (v> vy) supports stripes,
while for intermediate detuning supports patterns in the form
of labyrinths [8], phase solitons [9], and hexagons [10], in
the limit y> u.

In the opposite limit >y (or equivalently when the
Hopf bifurcation point is closer than the saddle-node bifur-
cation point in the parameter space), the vortices [11] as
localized structures, and tilted waves [12] or crossroll pat-
terns [13] as extended patterns, can be expected. For inter-
mediate values of the parameters the transition between these
two phase-squeezed and phase-invariant patterns occurs. For
the particular case of phase domains this transition is known
as the Ising-Bloch transition [1]. The main result of the
present paper is the prediction of a similar transition for ex-
tended patterns, and the investigation of its properties. The
Ising-Bloch transition for extended patterns described in this
paper has not been reported previously in the literature, and
could find applications in a variety of nonlinear systems,
those described by Eq. (1).

In Sec. II we overview the domain wall dynamics at small
detuning, i.e., we discuss the Ising-Bloch transition of do-
main walls. There is a large activity on studies about the
Ising-Bloch transition (see, e.g., Ref. [14], where the stability
of domain walls in presence of modulational instabilities
leading to labyrinthic patterns is considered). We generalize
the existing results to the nonvariational cases of Eq. (1).
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Next, in Sec. III we generalize the Ising-Bloch transition to
extended patterns (stripes and labyrinths) appearing at inter-
mediate and large values of detuning. Finally, in Sec. IV we
conclude and shortly discuss the possible generalization of
the Ising-Bloch transition to two-dimensional patterns, such
as hexagons and phase (dark-ring) solitons.

II. DOMAIN WALLS IN THE PDGLE

Domain walls are localized structures connecting two dif-
ferent solutions in different regions of space. For Eq. (1), the
stationary and spatially homogeneous solution is given by
the complex amplitude A=|alexp(ip), where

w+ve+ (1 +c*)y = (v—uc)?

|a|2 - 1+¢? ’ (2a)
c|a|2 -v
tan(2¢) = |a|2——,ug. (2b)

The linear stability analysis shows that the homogeneous
solution (2a) and (2b) is stable against pattern forming insta-
bilities for small detunings. In the purely diffractive case
d,,=0, corresponding, e.g., to optical systems, this stability
condition is given by v<c(y+pu).

The solution given by Eq. (2a) and (2b) implies the exis-
tence of two nonzero homogeneous states with the same in-
tensity value and amplitudes with opposite sign or, in terms
of phase, related by ¢,=¢;+ . Owing to this symmetry, the
fields are perfectly phase squeezed. These two solutions,
when realized in different spatial regions, constitute phase
domains, and the lines separating these two solutions the
domain walls. The domain walls are stable in the case of
small detuning, in accordance with the stability properties of
the homogeneous background solutions.

Equation (1) admits two analytical solutions in the form
of domain walls, namely Ising and Bloch walls. For the Ising
wall, the phase jumps abruptly from — to +m across the
boundary, whereas for Bloch walls the phase changes
smoothly. As a consequence, the amplitude of the order pa-
rameter at the core of the wall vanishes for Ising walls, but
not for Bloch walls. For this reason, Ising and Bloch walls
are sometimes referred as black and grey walls. In the non-
variational cases, there are also dynamical differences: Bloch
walls are nonstationary and drift at a constant velocity, the
motion resulting from the breaking of the chiral symmetry.

The amplitude distribution of a straight [one-dimensional
(1D)] Ising domain can be found analytically in the form

A(x) = A tanh(x/x), (3)

where A is the homogeneous solution of Eq. (1) and x, is the
width of the domain wall given by

., 2
Xg=——"75.
7 (1+ic)|al?

(4)

The Ising domain boundary solution has been previously
obtained in the variational limit of Eq. (1), corresponding to
v=c=d,;,,=0 [1]. We note, however, that the solution in the
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FIG. 1. Spatial distribution of Ising (a) and Bloch (b) walls,
obtained from the analytical solutions given by Egs. (3)—(5). Param-
eters are ¢=0.2, v=0.1, y=0.5, u=1, dg.=0, and d;,=1. For the
Bloch wall, the amplitude B=0.8 has been chosen arbitrarily,
which, however, corresponds to a particular point in parameter
space.

form of Eq. (4) is valid also in the nonvariational case, re-
sulting in a domain wall in form of an hyperbolic tangent of
complex argument. This results in periodically oscillating
fronts of domain boundary, as illustrated in Fig. 1(a).

When the distances to the Hopf and saddle-node bifurca-
tion points are of the same order, y= u, the phase of result-
ing patterns might be only partially squeezed. The domain
boundary is then of Bloch type, and obeys the analytical
form

Ap(x) = A tanh(x/x,) % iB sec h(x/x), (5)

where the signs of the second term correspond to the two
possible chiralities of the wall. The solution (5) exists in
variational as well as in the nonvariational case, where in the
latter case the width of the domain boundary x; is complex.
The amplitude A corresponds again to the homogeneous
background solution. The amplitude B in variational case is
given by simple expression B=+u—37; however, no simple

016203-2



ISING-BLOCH TRANSITION FOR SPATIALLY...

o

FIG. 2. Ising (top row), and Bloch (bottom row) domain walls,
as found by numerical integration of Eq. (1) in two spatial dimen-
sions. The intensity (left) and phase (right) patterns are depicted.
Periodic boundary conditions (here and in other calculations
throughout the article) were used on a spatial domain of unit size.
The parameters used: v=0.1, u=2, dr.=0.0005, d;,=0.0001, and
¢=0. The forcing amplitude for Ising domains is y=1, and for
Bloch domains y=0.3. The two-dimensional calculations in were
performed on the grid of (128X128).

analytic expression exist in the nonvariational case. In Fig.
1(b) the amplitude distribution of a Bloch wall is shown as
given by Eq. (5) for arbitrarily chosen parameters A, B, and
Xo- We note that since in nonsingular regions there exist a
nonsingular mapping between the parameters of the PGLE
(1) and the parameters of the Bloch wall (5), the arbitrarily
chosen parameters corresponds to a particular point in pa-
rameter space of PGLE.

The transition between Ising and Bloch walls in the varia-
tional case v=c=d,,=0 occurs at y=u/3 [1]. For vy larger
(smaller) than this critical value, the domain boundaries are
of Ising (Bloch) type. In the nonvariational case the transi-
tion point can be found analytically by matching the solu-
tions (4) and (5), but again does not leads to analytically
tractable results.

In two spatial dimensions the situation is more complex.
Figure 2 shows two examples of the intensity distribution in
presence of Ising and Bloch domain walls, where the nearly
variational limit (d,, <dg., ¥<<1) has been considered. The
most characteristic feature for the two-dimensional (2D)
Bloch domain walls is that they typically contain elliptically
shaped (phase-squeezed) vortices: the domain boundary sur-
rounding a phase domain resembles a necklace of vortices. In
other words, a Bloch domain wall, like shown in Fig. 2(b),
consists of pieces of Bloch walls of different chiralities,
separated by vortices. This occurs, for example, if during the
Ising-Bloch transition the chirality along the domain wall
acquires random values due, e.g., to a spatially random seed.
Similar vortex chain patterns have been reported in Ref. [15]
for a type-II optical parametric oscillator.
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FIG. 3. Ising-like (top row), and Bloch-like (bottom row) laby-
rinths. Everything as in Fig. 2, except for v=1, y=0.7. Values of u
are u=0 for Ising domains, and u=1.5 for Bloch domains.

III. ISING-BLOCH TRANSITION OF LABYRINTS
AND STRIPES

The main purpose of the article is to identify and describe
the Ising-Bloch transition for extended patterns, on the basis
of analogies with the above described corresponding transi-
tion for (localized) domain walls. The extended patterns, as
mentioned above, appear for large v> vy detunings (in the
form of 1D striped patterns), but also for moderate v=7y
detunings (in the form of 2D hexagons and labyrinths). This
happens in particular in the optical limit of Eq. (1), charac-
terized by dy,,>dg.. Figure 3 shows a labyrinth pattern ob-
tained by numerical integration of Eq. (1) for moderate de-
tuning. Similar patterns have been reported in Ref. [16]. The
situation depicted in Fig. 3 is similar to that shown in Fig. 2.
The dark lines in labyrinths are at some places (typically at
the edges) grey, remaining at other places dark. Also the
chirality sometimes change the sign along a grey line in such
labyrinths. All this indicates a similarity between Ising-Bloch
transition for domain walls and for extended patterns, and we
refer to these patterns as Bloch-like labyrinths, in contrast to
Ising-like labyrinths where the grey lines and vortices are
absent.

We perform the analytical study of the Ising-Bloch tran-
sition for extended patterns, considering the simplest 1D pat-
tern in the form of stripes, described by

A(x,1) = a (f)explikx + iwt) + a_(r)exp(— ikx — iwr)

+ (higher-order terms), (6)

where the moduli a, of the constituent tilted waves are not
necessarily equal one to another. In the following we con-
sider near-resonant stripes, for which the dispersion relation
dk>—v=Av, with |Av|< v, holds. Also we consider the “op-
tical” limit of the Eq. (1), taking for simplicity c¢=d,,=0.
Inserting the ansatz (6) into Eq. (1), neglecting terms oscil-
lating at third and higher spatial harmonics, and assuming
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FIG. 4. The amplitudes of the tilted waves for symmetric Ising
and for asymmetric Bloch solution, as given by (8) and (9) with

pm=1.

stationary solutions one obtains the following amplitude
equations

iwa, = (u—la,)* - 2la_|Pa, + ya’ - iAva,, (7a)

—iwa_=(u-2|a,*-|a_|)a_+ ya, —iAva_.  (7b)

The Ising-like stripe pattern corresponds to the symmetric
solution of Egs. (7a) and (7b), given by

=la |2:—’u+\ﬂy2_mj2

3 ; (8)

|a+|2
with =0, which is stable for y> u. The spatially harmonic
stripe solution (8) is, strictly speaking, valid for u,y<<1, in
order to ensure the smallness condition for the higher order
harmonics.

The stability analysis shows that the symmetric Ising
stripe (8) becomes unstable for y<<u/2. Instead, the asym-
metric solution |a,|#|a_| sets in, which corresponds to
Bloch-like stripes. An analytical expression of the asymmet-
ric solution of Egs. (7a) and (7b) is complicated in general.
Restricting, however, to the resonant case Av=0, one finds
the solution

la.)> = (n A\ - 497)/2, )

for w=0. The two signs in (9) correspond to the two possible
chiralities of the Bloch stripes.

The solutions (8) and (9) are plotted in Fig. 4. The tran-
sition between Ising and Bloch stripes in this case occurs at
a critical point y/u=1/2.

The numerical integration of Eq. (1) shows the above pre-
dicted Ising-Bloch transition of stripes. Bloch-like stripe pat-
terns are characterized by a nonzero value of its minimal
amplitude (corresponding to grey intensity patterns). In Fig.
5 the maximal and minimal values of the stripe patterns have
been numerically evaluated as a function of the forcing am-
plitude vy. The numerical results confirm the analytically pre-
dicted value of y/u=1/2 for the Ising-Bloch transition of
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FIG. 5. Maximal and minimal amplitude of the field in the stripe
pattern depending on the forcing amplitude y for the resonant
stripes, as obtained by numerical integration of Eq. (1). Insets show
the phase portraits of the Ising and Bloch walls. The parameters
used: v=0.64, u=1, dgr.=0.0001, d;,,=0.001, and ¢=0. The wave
number of the stripe is [k|=4-21. The one-dimensional calculations
in were performed on the grid of 2048 points.

stripes close to the threshold, and leads to slightly different
values far away from the threshold, when the third harmon-
ics are no more negligible. The insets in Fig. 5 shows nu-
merically obtained phase portraits of Ising and Bloch stripes
at selected values of 7.

The Ising-Bloch transition can be alternatively interpreted
as a symmetry-breaking bifurcation of the chirality param-
eter, defined as the imaginary part of the order parameter at
the core of the wall [1], x=Im A(0). The minimal amplitude
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FIG. 6. Velocity of the stripe pattern depending on the detuning
as obtained by numerical integration of Eq. (1) for two values of
y=0.4 (black symbols) and 0.2 (white symbols). The straight line is
the analytical dependence for the perfect tilted wave at y=0. The
parameters are as in Fig. 5.
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FIG. 7. Ising and Bloch-like hexagons as obtained by numerical
integration of Eq. (1) with the parameters v=0.5, y=0.5. dg,
=0.0001, d;,,=0.001, and c=0, for two different values of w=0 and
1.2.

of the field is proportional to chirality (a null chirality corre-
sponds to symmetric, Ising patterns), and consequently Fig. 5
also represents the chirality as a function of .

The resonant Bloch stripes are stationary, since the reso-
nant solutions (9) have zero oscillation frequency, w=0. The
oscillation frequency of off-resonance stripes is, however,
nonzero, w# 0, and therefore the off-resonant Bloch stripes
move. An analytically tractable solution of Egs. (7a) and (7b)
is possible in limiting cases, e.g., in the limit |a,| <|a_| when
one tilted wave strongly dominates, and close to the reso-
nance |Av|<<1. This results in a simple asymptotic expres-
sion for the oscillation frequency w=-Aw, and correspond-
ingly for the velocity of motion of Bloch stripes v=w/k=
—Av/k. Figure 6 shows the dependence of the velocity of
stripes with detuning as calculated numerically, which are in
a good agreement with the analytical result, especially in the
limit of a strong domination of one tilted wave.

We note to the point that similar solutions were numeri-
cally found for laser with squeezed injection, and were
named as imperfect tilted waves [17].

IV. CONCLUSIONS

We have shown a transition between perfectly and par-
tially phase-squeezed extended patterns, such as stripes and
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FIG. 8. Ising and Bloch-like dark ring spatial solitons as ob-
tained by numerical integration of Eq. (1) with the parameters v
=04, y=0.4, dg.=0.0001, d;,,=0.0015, and ¢=0, for two values of
©#=0 and 2.

labyrinths. This transition is analogous to the Ising-Bloch
transition of domain walls, and we identify it as the Ising-
Bloch transition of extended patterns. The transition, re-
ported here is analytically investigated by means of ampli-
tude equations for one-dimensional stripe patterns in the
parametrically driven Ginzburg-Landau equation, and nu-
merically confirmed for stripes (one spatial dimension) and
labyrinths (two spatial dimensions).

Our numerical investigation in the two-dimensional case
allows us to identify a similar transition between grey-line
and dark-line dominated pattern for hexagons and for the
phase (dark-ring) spatial solitons. Numerical examples of the
two kinds of patterns (Ising and Bloch like) are shown in
Fig. 7 (for hexagons [10]) and Fig. 8 (for phase solitons [9]),
where a transition between the dark-line and grey-line domi-
nated patterns is observed. The extension of the ideas pre-
sented in this paper to these essentially two-dimensional pat-
terns (hexagons and stripes) is in progress.
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